49. Mikalauskaite, K., Ziaunys, M., and Smirnovas, V. (2022). Lysozyme Amyloid Fibril Structural Variability Dependence on Initial Protein Folding State. International Journal of Molecular Sciences 23, 5421.
48. Nagaraj, M., Najarzadeh, Z., Pansieri, J., Biverstål, H., Musteikyte, G., Smirnovas, V., Matthews, S., Emanuelsson, C., Johansson, J., Buxbaum, J.N., et al. (2022). Chaperones mainly suppress primary nucleation during formation of functional amyloid required for bacterial biofilm formation. Chem. Sci. 13, 536–553.
47. Ziaunys, M., Mikalauskaite, K., Veiveris, D., Sakalauskas, A., and Smirnovas, V. (2022). Superoxide dismutase-1 alters the rate of prion protein aggregation and resulting fibril conformation. Archives of Biochemistry and Biophysics 715, 109096.
46. Ziaunys, M., Sakalauskas, A., Mikalauskaite, K., and Smirnovas, V. (2021). Polymorphism of Alpha-Synuclein Amyloid Fibrils Depends on Ionic Strength and Protein Concentration. International Journal of Molecular Sciences 22, 12382.
45. Ziaunys, M., Mikalauskaite, K., Sakalauskas, A., and Smirnovas, V. (2021). Interplay between epigallocatechin-3-gallate and ionic strength during amyloid aggregation. PeerJ 9, e12381.
44. Arabuli, L., Iashchishyn, I.A., Romanova, N.V., Musteikyte, G., Smirnovas, V., Chaudhary, H., Svedružić, Ž.M., and Morozova-Roche, L.A. (2021). Co-Aggregation of S100A9 with DOPA and Cyclen-Based Compounds Manifested in Amyloid Fibril Thickening without Altering Rates of Self-Assembly. International Journal of Molecular Sciences 22, 8556.
43. Strazdaite, S., Roeters, S.J., Sakalauskas, A., Sneideris, T., Kirschner, J., Pedersen, K.B., Schiøtt, B., Jensen, F., Weidner, T., Smirnovas, V., et al. (2021). Interaction of Amyloid-β-(1–42) Peptide and Its Aggregates with Lipid/Water Interfaces Probed by Vibrational Sum-Frequency Generation Spectroscopy. J. Phys. Chem. B 125, 11208–11218.
42. Sakalauskas, A., Ziaunys, M., Snieckute, R., and Smirnovas, V. (2021). Autoxidation Enhances Anti-Amyloid Potential of Flavone Derivatives. Antioxidants 10, 1428.
41. Toleikis, Z., Ziaunys, M., Baranauskiene, L., Petrauskas, V., Jaudzems, K., and Smirnovas, V. (2021). S100A9 Alters the Pathway of Alpha-Synuclein Amyloid Aggregation. International Journal of Molecular Sciences 22, 7972.
40. Fridmanis, J., Toleikis, Z., Sneideris, T., Ziaunys, M., Bobrovs, R., Smirnovas, V., and Jaudzems, K. (2021). Aggregation Condition–Structure Relationship of Mouse Prion Protein Fibrils. International Journal of Molecular Sciences 22, 9635.
39. Chaudhary, H., Iashchishyn, I.A., Romanova, N.V., Rambaran, M.A., Musteikyte, G., Smirnovas, V., Holmboe, M., Ohlin, C.A., Svedružić, Ž.M., and Morozova-Roche, L.A. (2021). Polyoxometalates as Effective Nano-inhibitors of Amyloid Aggregation of Pro-inflammatory S100A9 Protein Involved in Neurodegenerative Diseases. ACS Appl. Mater. Interfaces 13, 26721–26734.
38. Leri, M., Chaudhary, H., Iashchishyn, I.A., Pansieri, J., Svedružić, Ž.M., Gómez Alcalde, S., Musteikyte, G., Smirnovas, V., Stefani, M., Bucciantini, M., et al. (2021). Natural Compound from Olive Oil Inhibits S100A9 Amyloid Formation and Cytotoxicity: Implications for Preventing Alzheimer’s Disease. ACS Chem. Neurosci. 12, 1905–1918.
37. Ziaunys, M., Mikalauskaite, K., Sakalauskas, A., and Smirnovas, V. (2021). Using lysozyme amyloid fibrils as a means of scavenging aggregation-inhibiting compounds. Biotechnology Journal 16, 2100138.
36. Kasho, K., Krasauskas, L., Smirnovas, V., Stojkovič, G., Morozova-Roche, L.A., and Wanrooij, S. (2021). Human Polymerase δ-Interacting Protein 2 (PolDIP2) Inhibits the Formation of Human Tau Oligomers and Fibrils. International Journal of Molecular Sciences 22, 5768.
35. Ziaunys, M., Sakalauskas, A., Mikalauskaite, K., Snieckute, R., and Smirnovas, V. (2021). Temperature-Dependent Structural Variability of Prion Protein Amyloid Fibrils. International Journal of Molecular Sciences 22, 5075.
34. Szulc, N., Burdukiewicz, M., Gąsior-Głogowska, M., Wojciechowski, J.W., Chilimoniuk, J., Mackiewicz, P., Šneideris, T., Smirnovas, V., and Kotulska, M. (2021). Bioinformatics methods for identification of amyloidogenic peptides show robustness to misannotated training data. Scientific Reports 11, 8934.
33. Jurgelevičiūtė, J., Bičkovas, N., Sakalauskas, A., Novickij, V., Smirnovas, V., and Lastauskienė, E. (2021). Effects of Pulsed Electric Fields on Yeast with Prions and the Structure of Amyloid Fibrils. Applied Sciences 11, 2684.
32. Ziaunys, M., Sakalauskas, A., Sneideris, T., and Smirnovas, V. (2021). Lysozyme Fibrils Alter the Mechanism of Insulin Amyloid Aggregation. International Journal of Molecular Sciences 22, 1775.
31. Ziaunys, M., Sakalauskas, A., Mikalauskaite, K., and Smirnovas, V. (2021). Exploring the occurrence of thioflavin-T-positive insulin amyloid aggregation intermediates. PeerJ 9, e10918.
30. Cataldi, R., Chia, S., Pisani, K., Ruggeri, F.S., Xu, C.K., Šneideris, T., Perni, M., Sarwat, S., Joshi, P., Kumita, J.R., et al. (2021). A dopamine metabolite stabilizes neurotoxic amyloid-β oligomers. Communications Biology 4, 1–10.
29. Martins, P.M., Navarro, S., Silva, A., Pinto, M.F., Sárkány, Z., Figueiredo, F., Pereira, P.J.B., Pinheiro, F., Bednarikova, Z., Burdukiewicz, M., et al. (2020). MIRRAGGE – Minimum Information Required for Reproducible AGGregation Experiments. Frontiers in Molecular Neuroscience 13.
28. Mikalauskaite, K., Ziaunys, M., Sneideris, T., and Smirnovas, V. (2020). Effect of Ionic Strength on Thioflavin-T Affinity to Amyloid Fibrils and its Fluorescence Intensity. International Journal of Molecular Sciences 21, 8916.
27. Ziaunys, M., Sakalauskas, A., and Smirnovas, V. (2020). Identifying Insulin Fibril Conformational Differences by Thioflavin-T Binding Characteristics. Biomacromolecules .
26. Sneideris, T., Ziaunys, M., Chu, B.K.-Y., Chen, R.P.-Y., and Smirnovas, V. (2020). Self-Replication of Prion Protein Fragment 89-230 Amyloid Fibrils Accelerated by Prion Protein Fragment 107-143 Aggregates. International Journal of Molecular Sciences 21, 7410.
25. Pampuscenko, K., Morkuniene, R., Krasauskas, L., Smirnovas, V., Tomita, T., and Borutaite, V. (2020). Distinct Neurotoxic Effects of Extracellular Tau Species in Primary Neuronal-Glial Cultures. Molecular Neurobiology.
24. Sakalauskas, A., Ziaunys, M., and Smirnovas, V. (2020). Gallic acid oxidation products alter the formation pathway of insulin amyloid fibrils. Scientific Reports 10, e14466.
23. Musteikyte, G., Ziaunys, M., and Smirnovas V. (2020). Methylene blue inhibits nucleation and elongation of SOD1 amyloid fibrils. PeerJ, 8, e9719.
22. Talaikis, M., Strazdaitė, S., Žiaunys, M., and Niaura, G. (2020). Far-Off Resonance: Multiwavelength Raman Spectroscopy Probing Amide Bands of Amyloid-β-(37–42) Peptide. Molecules 25, e3556.
21. Pansieri, J., Iashchishyn, I.A., Fakhouri, H., Ostojić, L., Malisauskas, M., Musteikyte, G., Smirnovas, V., Schneider, M.M., Scheidt, T., Xu, C.K., et al. (2020). Templating S100A9 amyloids on Aβ fibrillar surfaces revealed by charge detection mass spectrometry, microscopy, kinetic and microfluidic analyses. Chemical Science 11, 7031–7039.
20. Strazdaite, S., Navakauskas, E., Kirschner, J., Sneideris, T., and Niaura, G. (2020). Structure Determination of Hen Egg-White Lysozyme Aggregates Adsorbed to Lipid/Water and Air/Water Interfaces. Langmuir 36, 4766–4775.
19. Ziaunys, M., Sneideris, T., and Smirnovas, V. (2020). Formation of distinct prion protein amyloid fibrils under identical experimental conditions. Scientific Reports 10, e4572.
18. Pampuscenko, K., Morkuniene, R., Sneideris, T., Smirnovas, V., Budvytyte, R., Valincius, G., Brown, G.C., and Borutaite, V. (2020). Extracellular tau induces microglial phagocytosis of living neurons in cell cultures. Journal of Neurochemistry 154, 316-329.
17. Ziaunys, M., Mikalauskaite, K., and Smirnovas, V. (2019). Amyloidophilic Molecule Interactions on the Surface of Insulin Fibrils: Cooperative Binding and Fluorescence Quenching. Scientific Reports 9, e20303.
16. Sneideris, T., Sakalauskas, A., Sternke-Hoffmann, R., Peduzzo, A., Ziaunys, M., Buell, A.K., and Smirnovas, V. (2019). The Environment Is a Key Factor in Determining the Anti-Amyloid Efficacy of EGCG. Biomolecules 9, e855.
15. Sakalauskas, A., Ziaunys, M., and Smirnovas, V. (2019). Concentration-dependent polymorphism of insulin amyloid fibrils. PeerJ 7, e8208.
14 Ziaunys, M., and Smirnovas, V. (2019). Additional Thioflavin-T Binding Mode in Insulin Fibril Inner Core Region. Journal of Physical Chemistry B 123, 8727–8732.
13. Ruggeri, F.S., Šneideris, T., Chia, S., Vendruscolo, M., and Knowles, T.P.J. (2019). Characterizing Individual Protein Aggregates by Infrared Nanospectroscopy and Atomic Force Microscopy. JoVE (Journal of Visualized Experiments) e60108.
12. Ziaunys, M., Sneideris, T., and Smirnovas, V. (2019). Exploring the potential of deep-blue autofluorescence for monitoring amyloid fibril formation and dissociation. PeerJ 7, e7554.
11. Pansieri, J., Ostojić, L., Iashchishyn, I.A., Magzoub, M., Wallin, C., Wärmländer, S.K.T.S., Gräslund, A., Nguyen Ngoc, M., Smirnovas, V., Svedružić, Ž., et al. (2019). Pro-Inflammatory S100A9 Protein Aggregation Promoted by NCAM1 Peptide Constructs. ACS Chemical Biology 14, 1410–1417.
10. Ruggeri, F.S., Šneideris, T., Vendruscolo, M., and Knowles, T.P.J. (2019). Atomic force microscopy for single molecule characterisation of protein aggregation. Archives of Biochemistry and Biophysics 664, 134–148.
9. Ziaunys, M., and Smirnovas, V. (2019). Emergence of visible light optical properties of L-phenylalanine aggregates. PeerJ 7, e6518.
8. Ziaunys, M., Sneideris, T., and Smirnovas, V. (2018). Self-inhibition of insulin amyloid-like aggregation. Physical Chemistry Chemical Physics 20, 27638–27645.
7. Iashchishyn, I.A., Sulskis, D., Nguyen Ngoc, M., Smirnovas, V., and Morozova-Roche, L.A. (2017). Finke–Watzky Two-Step Nucleation–Autocatalysis Model of S100A9 Amyloid Formation: Protein Misfolding as “Nucleation” Event. ACS Chemical Neuroscience 8, 2152–2158.
6. Šneideris, T., Baranauskienė, L., Cannon, J.G., Rutkienė, R., Meškys, R., and Smirnovas, V. (2015). Looking for a generic inhibitor of amyloid-like fibril formation among flavone derivatives. PeerJ 3, e1271.
5. Sneideris, T., Milto, K., and Smirnovas, V. (2015). Polymorphism of amyloid-like fibrils can be defined by the concentration of seeds. PeerJ 3, e1207.
4. Sneideris, T., Darguzis, D., Botyriute, A., Grigaliunas, M., Winter, R., and Smirnovas, V. (2015). pH-Driven Polymorphism of Insulin Amyloid-Like Fibrils. PloS One 10, e0136602.
3. Malisauskas, R., Botyriute, A., Cannon, J.G., and Smirnovas, V. (2015). Flavone derivatives as inhibitors of insulin amyloid-like fibril formation. PloS One 10, e0121231.
2. Milto, K., Michailova, K., and Smirnovas, V. (2014). Elongation of mouse prion protein amyloid-like fibrils: Effect of temperature and denaturant concentration. PLoS One 9, e94469.
1. Milto, K., Botyriute, A., and Smirnovas, V. (2013). Amyloid-Like Fibril Elongation Follows Michaelis-Menten Kinetics. PLoS One 8, e68684.